6,668 research outputs found

    Directed transport of active particles over asymmetric energy barriers

    Full text link
    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transitions rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions

    Aging under Shear: Structural Relaxation of a Non-Newtonian Fluid

    Full text link
    The influence of an applied shear field on the dynamics of an aging colloidal suspension has been investigated by the dynamic light scattering determination of the density autocorrelation function. Though a stationary state is never observed, the slow dynamics crosses between two different non-equilibrium regimes as soon as the structural relaxation time approaches the inverse shear rate. In the shear dominated regime (at high shear rate values) the structural relaxation time is found to be strongly sensitive to shear rate while aging proceeds at a very slow rate. The effect of shear on the detailed shape of the density autocorrelation function is quantitatively described assuming that the structural relaxation process arises from the heterogeneous superposition of many relaxing units each one independently coupled to shear with a parallel composition rule for timescales.Comment: 5 pages, 5 figure

    Run-and-tumble particles in speckle fields

    Full text link
    The random energy landscapes developed by speckle fields can be used to confine and manipulate a large number of micro-particles with a single laser beam. By means of molecular dynamics simulations, we investigate the static and dynamic properties of an active suspension of swimming bacteria embedded into speckle patterns. Looking at the correlation of the density fluctuations and the equilibrium density profiles, we observe a crossover phenomenon when the forces exerted by the speckles are equal to the bacteria's propulsion

    Effective run-and-tumble dynamics of bacteria baths

    Full text link
    {\it E. coli} bacteria swim in straight runs interrupted by sudden reorientation events called tumbles. The resulting random walks give rise to density fluctuations that can be derived analytically in the limit of non interacting particles or equivalently of very low concentrations. However, in situations of practical interest, the concentration of bacteria is always large enough to make interactions an important factor. Using molecular dynamics simulations, we study the dynamic structure factor of a model bacterial bath for increasing values of densities. We show that it is possible to reproduce the dynamics of density fluctuations in the system using a free run-and-tumble model with effective fitting parameters. We discuss the dependence of these parameters, e.g., the tumbling rate, tumbling time and self-propulsion velocity, on the density of the bath

    Colloidal attraction induced by a temperature gradient

    Full text link
    Colloidal crystals are of extreme importance for applied research, such as photonic crystals technology, and for fundamental studies in statistical mechanics. Long range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However long range attractive forces are very rare in the colloidal realm. Here we report a novel strong and long ranged attraction induced by a thermal gradient in the presence of a wall. Switching on and off the thermal gradient we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermal induced slip flow on particle surfaces. We used optical tweezers to directly measure the force law and compare it to an analytic prediction based on Stokes flow driven by Marangoni forces.Comment: 4 pages, 4 figure

    First-passage time of run-and-tumble particles

    Full text link
    We solve the problem of first-passage time for run-and-tumble particles in one dimension. Exact expression is derived for the mean first-passage time in the general case, considering external force-fields and chemotactic-fields, giving rise to space dependent swim-speed and tumble rate. Agreement between theoretical formulae and numerical simulations is obtained in the analyzed case studies -- constant and sinusoidal force fields, constant gradient chemotactic field. Reported findings can be useful to get insights into very different phenomena involving active particles, such as bacterial motion in external fields, intracellular transport, cell migration, animal foraging

    Polar features in the flagellar propulsion of E. coli bacteria

    Full text link
    E. coli bacteria swim following a run and tumble pattern. In the run state all flagella join in a single helical bundle that propels the cell body along approximately straight paths. When one or more flagellar motors reverse direction the bundle unwinds and the cell randomizes its orientation. This basic picture represents an idealization of a much more complex dynamical problem. Although it has been shown that bundle formation can occur at either pole of the cell, it is still unclear whether this two run states correspond to asymmetric propulsion features. Using holographic microscopy we record the 3D motions of individual bacteria swimming in optical traps. We find that most cells possess two run states characterised by different propulsion forces, total torque and bundle conformations. We analyse the statistical properties of bundle reversal and compare the hydrodynamic features of forward and backward running states. Our method is naturally multi-particle and opens up the way towards controlled hydrodynamic studies of interacting swimming cells

    Hydrodynamic Trapping of Swimming Bacteria by Convex Walls

    Get PDF
    Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This behavior may have a biological importance but can also be exploited by using microfabricated structures to manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria is, however, still an open question. By studying the swimming motion of Escherichia coli cells near microfabricated pillars of variable size, we show that cell entrapment is also present for convex walls of sufficiently low curvature. Entrapment is, however, markedly reduced below a characteristic radius. Using a simple hydrodynamic model, we predict that trapped cells swim at a finite angle with the wall and a precise relation exists between the swimming angle at a flat wall and the critical radius of curvature for entrapment. Both predictions are quantitatively verified by experimental data. Our results demonstrate that the main mechanism for wall entrapment is hydrodynamic in nature and show the possibility of inhibiting cell adhesion, and thus biofilm formation, using convex features of appropriate curvature

    Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics

    Full text link
    The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated.Comment: 5 pages, 3 figure
    • …
    corecore